Abstract Guideline:

Please write a paragraph with maximum 200 words containing following

- 1. Start the abstract with significance of your topic and area of research.
- 2. Articulate the prevalent state-of-the-art, focus areas and key gap your work will be cover.
- 3. Detail the scope of the work done which will be presented in this talk.
- 4. Highlight the key results and insights obtained in this work.
- 5. Describe the significance and future of this work.
- 6. The title of paper (Times New Roman 14 bold) (Spacing 1.0)
- 7. Name, organization details, email, contact: (times new roman 12 bold)
- 8. Abstract title: (times new roman 12 bold)
- 9. Abstract text times new roman 12 Justified
- 10. Keywords: Italic Times bold 12
- 11. A sample abstract is also attached for reference.

An overview of microstructure and texture development in β -Ti alloys

Aman Gupta¹, Amit Kumar² and Rajesh K. Khatirkar³

^{1,2,3} Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur-440010, INDIA

(Email: amangpta@gmail.com, chaudharyamit69@gmail.com, rajesh.khatirkar@gmail.com)

ABSTRACT

Titanium and its alloys find widespread applications in aerospace industry due to excellent combination of mechanical properties, corrosion resistance and light weightiness. Titanium alloys are broadly classified as α -Ti (hcp), α + β Ti (hcp+bcc) and β -Ti (bcc) alloys based on the microstructure. β -Ti alloys are characterized by high strength and good ductility. β -Ti alloys can be classified on the basis of molybdenum equivalent (Mo_{eq}) as stable (Mo_{eq}> 25) and metastable (Mo_{eq} < 25) alloys. After cold rolling, β alloys shows the presence of typical bcc rolling textures viz. ND fibre (ND//<111>) and RD fibre (RD//<110>). The intensity of RD fibre increases with the increase in cold rolling reduction for β alloys. β alloys also show the presence of strong rotated cube texture ({001}<110>) along with RD and ND fibres after cold rolling. With the increase in deformation, strain induced martensite (SIM) also forms. Aging in β alloys leads to precipitation of ω phase, which is of high strength and hardness. β alloys show an optimal combination of strength and ductility, which is realized through a mixed microstructure possessing ω and globular/ellipsoidal or fine lenticular/acicular α particles dispersedly uniformly in the β matrix.

Keywords: β titanium alloys, cold rolling, microstructure and texture.